On the second best constant in logarithmic Sobolev inequalities on complete Riemannian manifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasilinear elliptic inequalities on complete Riemannian manifolds

We prove maximum and comparison principles for weak distributional solutions of quasilinear, possibly singular or degenerate, elliptic differential inequalities in divergence form on complete Riemannian manifolds. A new definition of ellipticity for nonlinear operators on Riemannian manifolds is introduced, covering the standard important examples. As an application, uniqueness results for some...

متن کامل

Sharp Sobolev Trace Inequalities on Riemannian Manifolds with Boundaries

In this paper, we establish some sharp Sobolev trace inequalities on n-dimensional, compact Riemannian manifolds with smooth boundaries. More specifically, let q = 2(n− 1)/(n− 2) , 1 S = inf {∫ R n + |∇u| : ∇u ∈ L(R+) , ∫ ∂R+ |u| = 1 } . We establish for any Riemannian manifold with a smooth boundary, denoted as (M,g), that there exists some constant A = A(M,g) > 0, ( ∫ ∂M |u| dsg) ≤ S ∫ M |∇gu...

متن کامل

Differential Inequalities on Complete Riemannian Manifolds and Applications

This paper treats various aspects of the asymptotic behavior of solutions of certain elliptic equations of geometric interest on complete Riemannian manifolds. Sharp results relating the rate of volume growth of a complete Riemannian manifold and the growth of its harmonic and subharmonic functions can be found in E22] together with references to related results. In Sect. 2 of this paper we con...

متن کامل

A sharp Sobolev inequality on Riemannian manifolds

Let (M, g) be a smooth compact Riemannian manifold without boundary of dimension n ≥ 6. We prove that ‖u‖ L2 ∗ (M,g) ≤ K 2 ∫ M { |∇gu| 2 + c(n)Rgu 2 } dvg + A‖u‖ 2 L2n/(n+2)(M,g), for all u ∈ H(M), where 2 = 2n/(n − 2), c(n) = (n − 2)/[4(n − 1)], Rg is the scalar curvature, K −1 = inf ‖∇u‖L2(Rn)‖u‖ −1 L2n/(n−2)(Rn) and A > 0 is a constant depending on (M, g) only. The inequality is sharp in the...

متن کامل

Optimal Constants in the Exceptional Case of Sobolev Inequalities on Riemannian Manifolds

Let (M, g) be a Riemannian compact n-manifold. We know that for any ε > 0, there exists Cε > 0 such that for any u ∈ Hn 1 (M), ∫ M e dvg ≤ Cε exp[(μn+ε) ∫ M |∇u| dvg+ 1 vol(M) ∫ M udvg ], μn being the smallest constant possible such that the inequality remains true for any u ∈ Hn 1 (M). We call μn the “first best constant”. We prove in this paper that it is possible to choose ε = 0 and keep Cε ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2003

ISSN: 0007-4497

DOI: 10.1016/s0007-4497(03)00022-8